ACCELERATE - Modular Abstraction Layer for Simplified Integration of Machine Learning Models
This project aims to develop a modular machine-learning model abstraction layer for the novel open-source browser Verso
to load and utilize various machine-learning models seamlessly. The proposed solution involves using the Rust programming language and will provide bindings to existing machine learning libraries, use common model formats such as ONNX
, and implement a basic API for interaction with different model architectures and types. This approach aims to make it easy for everyday users to load and run AI models without worrying about specifics, and further also provides web developers with simpler access through a minimal API for integration in web content. The intended abstraction layer will be implemented in the Servo
webview, and the expected deliverable is a source code library that runs cross-platform within the Verso browser. With this approach, we aim to provide the first stepping stone towards a coherent user experience for using machine learning models in a browser such as a11y, DID service brokerage, predictive page loading, etc.
By addressing several key challenges, such as defining a common API for different open-source machine learning models, ensuring data privacy and security, striking a balance between smaller and high-performance models, and considering various hardware configurations, this project aims to significantly enhance user experiences.
Innovation
With the Verso browser, we aim to revolutionize web browsing through comprehensive integration of on-device AI. Unlike Firefox Nightly's experimental AI features, Verso
offers a robust, fully integrated experience. Our key innovation is a highly adaptable abstraction layer that seamlessly incorporates standardized AI models, including transformers and computer vision models like YOLO V9
for object detection. The abstraction layer supports multiple model formats, adapts to various hardware configurations, and provides a common API for diverse machine learning tasks, aiding Verso
developers. It enables advanced features like intelligent content summarization and image description, offering a more cohesive and user-friendly experience than Firefox. The Verso Accelerator focuses on balancing high-performance models with hardware compatibility, ensuring efficient machine learning enhanced browsing across devices. By leveraging and expanding upon open-source machine learning models, the abstraction layer for Verso
will set a new standard for intelligent, privacy-preserving web interaction, enhancing user productivity and accessibility.
Modularity and Envisioned Use Cases
We're developing ACCELERATE
as a seamless module, easily loadable within Verso
as an opt-in feature. Our goal is to empower users with the flexibility to enhance their browsing experience. With our model loader, you can experience a more natural reading experience through text-to-speech models, supporting individuals with vision impairments. The addition of live captions to videos further expands accessibility features, ensuring that everyone can engage with multimedia content. The model loader also enables the summary feature for website content, allowing users to quickly grasp essential information at a glance. This is especially useful in today's fast-paced digital environment where information density can be overwhelming. By integrating these features into your browsing experience, we're committed to making your online interactions more intuitive and enjoyable.